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ABSTRACT

In this project, we have worked on identifying and implementing the baseline
Reinforcement Learning algorithms such as Reinforce with baseline [Williams
(2004)], One step actor critic method [Sutton & Barto| (2018)] to evaluate the
performances of environments with continuous state spaces such as Cartpole, Ac-
robot and Lunar lander using the OpenAl gym toolkit [Brockman et al.[ (2016))].
Additionally, we have also implemented the recently proposed policy gradient
method, PPO (Proximal policy optimization)[Schulman et al.| (2017b)] and have
experimented on different environments and have explained our reasoning on the
advantages of PPO over other previous methods.

1 INTRODUCTION

Research in reinforcement learning has become extremely important these days to automate and
perform tasks without much of human supervision. Additionally, reinforcement learning is also
being utilized in developing Language models that recently have taken the internet by storm. We
in this project, explore the shortcomings, benchmark and discuss the findings of three various RL
algorithms : Reinforce with baseline, One step actor critic method and PPO on environments with
continuous state and discrete action spaces. The code for our project is available in this repo. We
now will give a brief description about these environments.

1.1 CARTPOLE

Cartpole is one of the environments provide by the OpenAl gym. It consists of a cart with a pole
that needs to be balanced. The goal of the agent is to balance the pole within a designated area and
the pole should not have more than 12° to its starting point, else it would be considered as fallen .
The action space of the environment involves moving left and right. The reward system is dense and
for each time-step, the pole is balanced, the environment provides a +1 reward. As we are utlizing
CartPole-V2, this is a finite horizon problem with a maximum time-step of 500. Hence, If the agent
is able to get a reward of 500, it means the agent has won and the episode is terminated

1.2 ACROBOT

Acrobot is a Classic Control environments environment which was first introduced in|Sutton & Barto
(2018)). The system consists of two links connected linearly to form a chain and the joint between
the two is actuated. The goal of the agent is to make the free end of the actuated joint to reach a
height by applying torque to the fixed point. Each of the torque application : -1 (-1 torque - towards
left ) 1 (0 torque to right) and 1 (1 torque - towards right) incurs a reward of -1 till the free end
reaches the height. This is a finite horizon MDP where the number of steps in the episode is capped
to 500. Hence, the minimum possible reward obtained per episode is -500. The goal of the RL
algorithm would be maximize this reward by reaching the goal height with as minimum number of
steps possible.

1.3 LUNAR LANDER

LunarLandar environment is a classic rocket trajectory optimization problem within the OpenAl
Gym framework that simulates the task of landing a spacecraft on the moon’s surface. The goal is to
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land the module as gently as possible to earn points, balancing precise control with fuel efficiency.
The lander starts at the top center of the viewport with a random initial force applied to its center
of mass. The lander’s state consists of its position, velocity, angular velocity along x and y axis.
There are 4 possible actions: do nothing, fire main engine or fire any one of the side engines. For
a successful landing, the agent achieves a +100 reward whereas crashing incurs a -100 reward.
For each step, the agent receives a reward which is determined by proximity to lunar surface and
penalized by firing engines. The episode terminates if the lander either lands or crashes, or goes
outside of the viewport.

2 INTRO TO RL ALGORITHMS

The algorithms in Reinforcement learning can be mainly distinguished between model based and
model free algorithms. In the case of Model based, the algorithms builds an explicit model of
the environment in order to plan and make decisions. Some of the examples involve Dynamic
Programming, Monte Carlo tree search and the others. However, often times when the model of
the environment is not available readily the algorithms sometimes rely on explicitly learning by
simulating the environment, these are called Model free algorithms. The algorithms that we work
on this project falls into the realm of Model free algorithms more particularly they belong to the
special category of algorithms called as policy gradient methods.

3 REINFORCE wWITH BASELINE

3.1 INTRODUCTION

REINFORCE with baseline is a policy gradient method that learns a parameterized policy which
helps in action selection instead of learning action values and then selecting actions depending on the
value functions. The algorithm mainly depends on the fact that the expected return is proportional to
its gradient. The learnt parameterized policy is advantageous where the state spaces are not restricted
to be discrete for learning the optimal policy for an environment.

The Reinforce with baseline is a Monte carlo algorithm specifically applied for an episodic case. To
reduce the variance and to improve the speed of convergence, the original REINFORCE algorithm
has been generalized to include a comparison against a baseline. A baseline is any function that is
independent of the action taken at a given time step and in this project, we are using the state value
estimate (.S, w) as the baseline. The complete implementation of the algorithm is given below :

Algorithm 1 REINFORCE with Baseline

Input: a differentiable policy parametrization 7 (als, )
Input: a differentiable state-value function parameterization ¢(s, w)
Hyperparameters: Step sizes o, o, Discount factor
Initialize policy parameter 6 and state-value weights w arbitratrily.
for each episode do
Generate an episode Sy, Ao, R1,...,S7—1, Ar_1, Ry following 7 (+|-, 6)
fort:Ot(%T—ldo
G Y VT R
0+ G—10(s,w)
W w4 aVoV; (S, w)
0 + 0+ a9tV log (A4St 0)
end for
end for

3.2 IMPLEMENTATION DETAILS

Implementation required us to chose the way we parameterize the policy and value evaluation and
the clear choice for that was two different neural networks respectively. Reasons being that this
helped in adapting the networks for the case of both continuous and discrete state spaces. Each of
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Plot indicating learning of the agent over episodes. Mean and S.D of rewards with best-hyperparams
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Figl : Cartpole - Steps per episode plot. Fig2 : Cartpole - Mean and SD plots.

the neural network involved two intermediate layers with RELU activations. Adam optimizer was
used for training the neural networks. The main difference between the two Neural networks is that
the policy network will output “n” logits where n is the |A| (Size of action space). However, the
value network would output a single logit thereby trying to approximate the value function for a
state representation. Except for Lunar lander (which took large number of episodes for convergence
~ 20K), the hyper-parameter for the other two environments (Cartpole and Acrobot) has been tuned
using Grid search. Now we will explain the implementation specifics for each of the environments.

3.3 CARTPOLE

For Cart-pole, both the value and policy network had two hidden layers with size 128 and 64 respec-
tively. For the hyper-parameter tuning, we tuned with different learning rates. For policy network,
the LR were tuned (1e=2,1e~, 1e~4) and for value network : [0.1, 1e~2,0.01] with a fixed number
of max episodes of 3k. It can be seen from the figures [I] that the reinforce with baseline was able to
learn to balance as the episode progressed.

Below table is the best hyper-parameter that was used to train the model :

H Parameters Values H

alpha_policy o le-3
alpha_weights o le-2
Discount vy 0.99

After the best hyper-parameter was chosen, we ran the training 10 times and got the mean and
Standard deviation of the reward per episode and it has been plotted in[2] The video of the model
that was learnt being tested can be seen here : Cartpole-video

3.4 ACROBOT

For Acrobot, as the problem is similar in complexity of Cart-pole, we experimented with the same
number of hidden layers and the sizes as of Cart-pole. For the hyper-parameter tuning, we tuned
with different learning rates. For policy network, the LR were tuned (le=2,1e~2,1e~*) and for
value network : [0.1,1e73, 1e~2] with a fixed number of max episodes of 3k. However, due to the
way the reward system has been built for acrobat, the agent was able to learn to achieve the goal /
train properly 3/5 times when it was run with different seeds for the set of best hyper-parameters.
The best hyper-parameters set is provided in the table below |3.4
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Plot indicating learning of the agent over episodes. Mean and S.D of rewards for 5 runs with best hyper-params
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‘ Parameters Values H

alpha_policy o le-3
alpha_weights o le-2
Discount ~y 0.99

Figure [3] depicts the way number of steps has been executed for a particular run of the acrobat
environment. During the learning phase, as we can see, the number of steps taken per episode is
reducing and hence the graph looks like its flattening, by this we can conclude that the networks
were able to solve the acrobat problem as the training progressed. Figure [ also depicts the rewards
obtained as the training progresses for a set of 3 runs where the networks were able to get to a near
optimal policy. The video of the learnt optimal policy can be seen here : |Acrobot-link

3.5 LUNAR LANDER

For Lunar Lander, as the problem is slightly more complicated than the other two environments, we
used a three layer neural network for value and policy representation. The layer sizes were 256, 128
and 64 respectively. The Learning rate was chosen to be 1e~* for both policy and value networks.
The maximum number of episodes were fixed to be 30K.

We chose a fixed set of hyper-parameter as stated in the table [3.5] due to the long duration of time
taken by the Algorithm to learn the environment. Observing the figure, [5] we can state that as the
training progressed, the number of steps started to increase and the agent was able to learn to utilize
steps to land the lunar lander appropriately. Additionally, the figure [6] depicts the way rewards
started to increase as the training progressed. The video of the agent being tested can be found here
: Lunar-lander


https://github.com/Sriharsha-hatwar/RL-Proj#acrobot-
https://github.com/Sriharsha-hatwar/RL-Proj#lunar-lander-

COMPSCI 687 Reinforcement learning Project Fall 2023

H Parameters Values H

alpha_policy o le-4
alpha_weights o le-4
Discount vy 0.99

4  ONE-STEP ACTOR-CRITIC(EPISODIC) METHOD

The Actor-Critic methods represent a category of policy gradient approaches that extend beyond as-
signing state value only to the initial state; they also encompass the subsequent state in the transition.
The key distinction between REINFORCE with a baseline and Actor-Critic lies in the substitution
of the discounted return with the one-step return. This one-step return comprises the discounted
estimated value of the second state, added to the reward. Similar to observations in TD learning, the
one-step return often displays improved variance compared to the actual return, albeit it introduces
a level of bias. Moreover, in this context, model updates can occur after each step without the neces-
sity to wait until the episode’s completion. When the state-value function is used to assess actions
in this way it is called a critic, the policy network is deemed as an actor, overall the policy-gradient
method is termed an actor—critic method.

Below is the outline of the algorithm used to learn One step actor critic method :

Algorithm 2 One-step Actor-Critic (episodic)

Input: a differentiable policy parametrization m(als, 0)
Input: a differentiable state-value function parameterization ¢(s, w)
Hyperparameters: Step sizes a?, o™, Discount factor
Initialize policy parameter 6 and state-value weights w arbitratrily.
for each episode do
Initialize S (first state of episode)
I+1
while S is not terminal(for each timestep) do
A~ m(:]S,0)
Take action A, observe S/, R
0+ R+~0(S",w) —0(S,w)
W w+aVoV0(S, w)
0+ 6+ a%I6Vylogm(Al|S,0)
I —~I
S5
end while
end for

4.1 IMPLEMENTATION DETAILS

The actor network is similar to the policy network in and the critic network is similar to value
network. For both of them, we used fully connected layers with (128, 64) hidden states and ReLU
activations. Similar to[3.2]only the last fully connected layer is different between the two networks.
Depending on the number of actions the output dimension of the last layer changes. We utilized
Adam Optimizers with different learning rates based on the environment. Environment specific
details are discussed in the subsequent sections. For hyperparameter tuning, empirically we observed
that setting higher learning rate for critic results in better performance. We varied o between
le-2 and le-4 and ™ between le-1 an le-3 with a fixed random seed and took the best set of
hyperparameters for which the performance after 1000 episodes were maximized.

4.2 CARTPOLE

As presented in [2] we decay the learning rate for each step in the episode for the policy parameter
af. For CartPole, we observed that decaying the value parameter o in a similar manner helped
stabilize the training performance. The learning curves have been presented in Figure[/| We notice
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that the rewards exhibit lower variance, and the agent learns optimal behavior in fewer episodes(500)
when compared to REINFORCE.

Here are best set of hyperparamaters we identified and used to train the model:
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Figure 7: Learning Curves for Actor Critic CartPole

4.3 ACROBOT

For Acrobot, the exact version of the algorithm worked pretty well. Remarkably, the actor-critic
method achieved optimal behavior in the fewest number of episodes (250) compared to other algo-
rithms. The optimal action in Acrobot is counterintuitive and requires the agent to cross the upper
line randomly to learn about the desired action. The actor-critic approach, due to its parameter
updates at each step, demonstrated swift adaptation to reward signals compared to alternative meth-
ods. The learning curves have been presented in Figure[8] Here are best set of hyperparamaters we
identified and used to train the model:
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Figure 8: Learning Curves for Actor Critic Acrobot
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4.4 LUNAR LANDER

In the Lunar Lander environment, we observed improved outcomes by turning off the learning rate
decay associated with steps, potentially influenced by the environment’s larger horizon. Training the
agent required a substantial duration, extending to 5000 episodes, yet the training process exhibited
considerable noise, as evident in Fi gure@ This noise could be attributed to the intricate and complex
nature of the environment. The actor-critic method’s frequent parameter updates in each step might
lead to uncontrolled significant gradient steps, potentially causing instability in the learning process
and directing it towards undesired paths. Here are best set of hyperparamaters we identified and
used to train the model:
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Figure 9: Learning Curves for Actor Critic Lunar Lander

5 EXTRA CREDIT: PROXIMAL POLICY OPTIMIZATION

Recently, Proximal Policy Optimization method has gained a lot of traction since its used to align
large language models with human preference (L1 et al., [2023). Policy Gradient methods are often
unstable and could lead to either very large updates for some states or very small updates some other
states. Trust Region Policy Approximation(TRPO) (Schulman et al.l 2017a) addresses this issue
by enforcing a strict KL-divergence constraint. Proximal Policy Optimization (PPO)(Schulman
et al.l 2017b) simplifies the process by adding a clipped surrogate objective function. We define

r(0) = =219 TRPO maximizes a “surrogate” objective:
Ty q (stlat)

LEPIL(g) = &, [rt(e)zxt} (1)

with a hard constraint on KL-divergence between 7(6) and 7(6,1d) to avoid excessive policy update.
PPO uses a simplified clipped surrogate objective:

LCLIP(g) = T, [min (rt(e)At, clip(ri(6),1 — €, 1 + e)At)}

This clipped objective prevents the model to take large catastrophic updates and stabilizes the train-
ing. The objective also includes the value function error term. This objective can further be aug-
mented by adding an entropy bonus to ensure sufficient exploration. The overall objective becomes:

LyHPHVIRS(0) = B [LTHP(6)] = er - L (6) + e - S[mo](s:)

where c1, co are coefficients, and S denotes an entropy bonus, and LY Fisa squared-error loss In
general, collecting a set of trajectories and then running batch gradient descent for some epochs
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produces the best results. The PPO paper also discusses further optimization using Generalized
Advantage Estimator (GAE), but due to time constraint, we used the non-truncated discounted return
subtracted by the current state value estimate as the advantage estimator in our implementation. The
implemented algorithm is presented in 3]

Algorithm 3 Proximal Policy Optimization (PPO)

Initialize policy parameters 6y, initial value function parameters ¢g
Hypermarameters: number of epochs K, mini-batch size M, clipping parameter €, discount
factor , step sizes o, a®
for h=0,1,2,...do
Collect set of trajectories Dy, = {S;, A;, R;, 1 (A;|S;)} using 7, = 7(6},) in the environment

Calculate discounted return G; = Y°,_,, | 7"~ ' R,
Create dataset C' = {S;, A;, G;, mn(A;|5:)}
for k = 1to K do
for every mini-batch B of size M in C do
Compute advantages A(s,a) = G — V(s)
moa(a|s) < mr(als)
Update policy by optimizing surrogate objective:

0 — 0+ a®V, (min ( mo(als) A(s,a),clip ( molals) 4 ¢ q 4 e) As, a)) + c2 -

moid(als) moua(als)’

Strl(s0)

¢ =+ a®A(s,a)VgVy(s)
end for
end for
end for

5.1 IMPLEMENTATION DETAILS

We utilized the same policy and value network as used in Section 4.1} Similar to REINFORCE
and Actor-Critic, we applied Adam optimizers to update the parameters. Environment-specific de-
tails are discussed in the subsequent sections. One significant discovery was the stabilization of the
training process by normalizing the advantage estimates, a technique we leveraged across all en-
vironments. However, hyperparameter tuning posed challenges due to the multitude of parameters
involved. We set the clipping parameter e = 0.2, as mentioned in the original paper.

While collecting a set of trajectories, we ensured the minimum number of episodes reached a total
timestep exceeding 4 x horizon. Generally, maintaining a number of epochs K = 10 yielded satis-
factory results. For the remaining parameters, we conducted a grid search for o € [10’2, 10*4]

and a® € [10*17 10’3], along with a batch size M € {25,26,27 28},

5.2 CARTPOLE

PPO easily performs the best in this environment. It takes only 250 episodes to learn the optimal
behavior. Furthermore, it demonstrates less variance when compared to alternative algorithms. The
learning curves have been presented in Figure[I0] Here are best set of hyperparamaters we identified
and used to train the model:

Parameters Values

a? 10~4
a® 5x 1073
v 0.99
M 32

K 10

€ 0.2
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Figure 10: Learning Curves for PPO CartPole

5.3 ACROBOT

In the case of Acrobot, PPO achieves optimal behavior in approximately 500 episodes, positioning
itself between Reinforce and Actor Critic. However, PPO requires considerably less training time
than Actor Critic due to its less frequent parameter updates. The learning curves have been presented
in Figure[T1] Here are best set of hyperparamaters we identified and used to train the model:
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Figure 11: Learning Curves for PPO Acrobot

5.4 LUNAR LANDER

Lunar Lander stands out as the most intricate environment in our exploration, and PPO surpasses
other algorithms by a considerable margin within this setting. It achieves optimal behavior in just
1000 episodes, contrasting with the 5000 episodes required by the Actor Critic. Additionally, PPO
demonstrates notably lower variance in rewards. The learning curves have been presented in Figure
[T2] Here are best set of hyperparamaters we identified and used to train the model:
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Figure 12: Learning Curves for PPO Lunar Lander

6 DISCUSSION AND COMPARISON

Among the tested algorithms, Actor Critic achieved the best performance in the Acrobot environ-
ment, while PPO outperformed the others in all other environments. Tuning hyperparameters proved
challenging for all algorithms, particularly for PPO. This hampered direct performance comparisons
across different hyperparameter configurations due to both training time limitations and inherent
randomness within the environments. Additionally, performance variations were observed across
different random seeds, as visualized in the graphs. Notably, achieving the highest reward did not
always translate to optimal behavior. In the case of Lunar Lander, while the agent achieved the
optimal reward ( 200), it often continued firing engines even after landing successfully. Overall, all
algorithms were successful in learning the optimal expected behavior for all environments.
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