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Abstract

With the increasing popularity of 3D Point Cloud based
Neural Network techniques in safety-critical techniques, it
has become increasingly important to benchmark their per-
formance against datasets that closely represent real-world
artifacts. Real-world data collection suffers from irregular-
ities like noise, occlusion, and transformations. A dataset
that closely simulates such conditions through corruption
is ModelNet40-C. We benchmark performance of the Point
Transformer model on the ModelNet40-C dataset and show
that data augmentations improve the performance of the
model from baseline ModelNet40 classification tasks. To
the best of our knowledge, our work is the first effort to inte-
grate the Point Transformer with ModelNet40-C evaluation
benchmark.

1. Introduction

Point clouds have gained significant recognition as the
most popular and accessible data format within the realm
of 3D computer vision tasks. They can be obtained from
a diverse set of sensors and computer-aided design (CAD)
models and are also quite flexible as representations. Due
to these inherent advantages, point clouds have witnessed a
growing utilization in practical applications. Recently, the
usage of point clouds has gained traction in safety-critical
areas like self-driving cars [17], robotics [7], medical imag-
ing [13], and virtual and augmented reality [6].

The development of point cloud-based neural classifica-
tion techniques has significantly advanced the field of 3D
perception and understanding. Three prominent methods in
this domain are PointNet [8], PointNet++ [9], and KPConv
[11]. PointNet was one of the pioneering approaches that
directly processed unordered point cloud data without re-
quiring any additional pre-processing steps and employed
shared multi-layer perceptrons. Building upon PointNet,
PointNet++ introduced a hierarchical neural network archi-

tecture that captures local and global structures. KpConv,
on the other hand, introduced a novel convolutional operator
designed specifically for irregularly sampled point clouds.
It used adaptive kernel point sampling and weighted kernel
convolution.

Recently, inspired by the success of transformer-based
networks in Natural Language Processing tasks[12], re-
searchers have developed transformer-based point cloud
networks which have achieved state-of-the-art results in
various 3D point cloud recognition tasks [19, 15]. How-
ever, since these models will potentially be used in safety-
critical applications like autonomous driving, enhancing the
resilience of these models to a broad spectrum of corrup-
tions is crucial and requires a comprehensive analysis and
improvement of their robustness.

These applications require real-time predictions and
hence techniques that remove noise in real-time, do com-
pletions of missing points in point-clouds, or surface pa-
rameterization in real time due to camera angle will slow
the predictions and can be hazardous. Models need to be
pre-trained to handle these real-world artifacts, and bench-
marking these models against such data is crucial before
their integration into these applications.

Given the real-world constraints, it is crucial to acknowl-
edge that sensor inaccuracies and physical constraints intro-
duce common corruptions in point cloud data. For instance,
occlusion, a prevalent corruption in LiDAR and other scan-
ning devices, leads to partially visible point clouds. Ad-
ditionally, deformation is widespread in AR/VR games.
These corruptions pose an even greater risk in real-world
applications. Consequently, there is a pressing need to ex-
plore the robustness of 3D point cloud recognition against
such corruption. In this work, we evaluate Point Trans-
former [19] on the 3D point cloud classification robustness
benchmark Modelnet40-C [10].



2. Related Work

PointNet[8] emerged as one of the pioneering deep learn-
ing methodologies for point cloud recognition, employing
stacked MLP layers to capture the global structure. Build-
ing upon this, PointNet++[9] extended the approach to in-
corporate considerations for both local and global struc-
tures.

While convolution-based approaches were originally de-
veloped for 2D image processing, they have also demon-
strated noteworthy performance in point cloud analysis.
Notably, KPConv[! 1] introduced a flexible and efficient
convolution method that utilizes kernel points to determine
convolution weights in Euclidean space. Moreover, KP-
Conv can be extended to deformable convolutions, enabling
adaptation of kernel points to local geometry and ensuring
robustness to varying densities. Additionally, graph-based
models such as the one proposed by [14] have leveraged
message passing algorithms, showcasing significant perfor-
mance gains.

Inspired by self-attention theory [12] in NLP, ViT [2]
has shown remarkable success in 2D image understanding
tasks. Since 3D point clouds are inherently unordered, uti-
lizing self-attention appears to be a more intuitive approach.
PCT[3] was the first attempt to apply the transformer archi-
tecture in the Point Cloud Recognition tasks. Later, Point
Transformer [ 19] utilized the attetion mechanism to achieve
SOTA results in 3D point cloud understanding tasks. In-
stead of global attention used in earlier works like PCT
[3], they applied self-attention around local neighborhoods.
Also, they introduced the idea of vector self-attention which
captures more complexity compared to the traditional scalar
dot product attention. They were able to achieve SOTA re-
sults in classification, instance, and semantic segmentation.

There is great emphasis on increasing the importance of
incorporating powerful 3D shape representations with the
availability of affordable 2.5-depth sensors like Microsoft
Kinect. ModelNet40 [16] introduces a Convolutional
Deep Belief Network-based approach called 3DShapeNets,
which represents complex 3D shapes as probability distri-
butions of binary variables on a 3D voxel grid. The pro-
posed model learns to shape distributions from CAD data,
discovers hierarchical part representations automatically,
and supports joint object recognition and shape comple-
tion from 2.5D depth maps. The authors have constructed
a large-scale 3D CAD model dataset called ModelNet for
training the 3D deep learning model. Extensive experiments
demonstrate the superiority of their 3D deep representation
over existing methods across various tasks. The dataset con-
tains shapes from 40 categories, which are split into training
and testing. ModelNet40-C [10], a benchmark for evaluat-
ing corruption robustness in 3D point cloud models. They
identify a significant performance gap between state-of-the-
art models on ModelNet40 and ModelNet40-C. To address

this gap, the authors propose a simple yet effective method
by combining PointCutMix-R and TENT. They emphasize
the strength of Transformer-based architectures with proper
training recipes for achieving robustness.

3. Method and Architecture
3.1. Dataset

ModelNet40 dataset consists of 40 different object cat-
egories, encompassing common objects such as chairs, ta-
bles, lamps, cars, airplanes, and more. The original Mod-
elNet40 consists of 12,311 CAD-generated meshes, out of
which 9,843 are used for training while the rest 2,468 are
reserved for testing. The corresponding point cloud data
points are uniformly sampled from the mesh surfaces, and
then further preprocessed by moving to the origin and scal-
ing into a unit sphere.

ModelNet40-C is a systemic corruption robustness
benchmark based on the ModelNet40 dataset. The dataset
encompasses different common corruptions observed in
sensor, LIDARs and AR/VR systems. Overall, it has 15
corruption types, each with 5 severity levels. This makes
it a 75x larger dataset than the original ModelNet40. Note
that, ModelNet40-C exclusively utilizes the test split of the
clean dataset. Therefore, it’s not meant to be used during
the training phase, but rather intended for evaluating the ro-
bustness of point-cloud based models. The dataset contains
185,000 distinct point clouds.

The 15 corruption types can be divided into 3 broad
categories. The three broad categories are density, noise
and transformations. Each of these have 5 sub-categories.
For density, they are occlusion, lidar, local_density _inc, lo-
cal_density_dec and cutout. Occlusion and LiDAR tech-
niques employ ray tracing on original meshes to simulate
occlusion patterns, with LiDAR further incorporating the
vertical line-styled pattern of LiDAR point clouds. Ad-
ditionally, the methods of Local Density Inc, Local Den-
sity Dec, and Cutout leverage k nearest neighbors (kNN) to
randomly select and modify local clusters of points to ei-
ther increase or decrease their density. For noise, different
noises applied are uniform, gaussian, impulse, upsampling
and background. Uniform and Gaussian methods introduce
distinct distributional noise to individual points in a point
cloud. Impulse applies deterministic perturbations to a sub-
set of points, while upsampling generates new perturbation
points around existing points. Additionally, the background
technique randomly adds new points within the bounding
box space of the original point cloud. Transformations like
rotation, shear, FFD, RBF and INV_RBF are applied to the
dataset. Real-world point clouds often undergo rotations,
and the robustness against adversarial rotations has been
explored in various studies. In this context, the implemen-
tation considers mild rotations in xyz plane, Shear on the



Xy plane as a representative motion distortion in 3D point
clouds and investigates the application of Free-form defor-
mation (FFD) and radial basis function (RBF)-based defor-
mation for non-linear transformations. These corruptions
are represented in Figl.

3.2. Training

The ModelNet40-C paper conducted their analysis on 6
different archetectures, namely PointNet [8], PointNet++
[9], DGCNN [14], RSCNN [5], PCT [3]. We evaluated
a new architecture, Point Transformer on this benchmark.
It was introduced after the ModelNet40-C paper was pub-
lished. Point Transformer is based on the Transformer ar-
chitecture, and utilizes vector self-attention in the trans-
former block. It has achieved remarkable results on Model-
Net40 classification and segmentation benchmarks.

We conducted our training experiments on NVIDIA
Tesla M40 GPU. The original paper recommended running
200 epochs. However, we ran the model for 75 epochs
only due to resource and time constraints. Our entire train-
ing procedure 100 hours and testing took an additional 30
hours.

3.2.1 Training Data Augmentation

We explored four types of training data augmentation that
were mentioned in the ModelNet40-C paper.

e PointCutMix:[18] PointCutMix optimally matches
points between two point clouds, generating new train-
ing data by replacing points with their optimal as-
signed pairs. It employs two replacement strategies:
random selection of all replacement points or select-
ing k nearest neighbors of a random point. Hence
PointCutMix-R and PointCutMix-K. These strategies
consistently enhance performance in point cloud clas-
sification tasks. The introduction of saliency maps for
point selection further improves performance and en-
hances model robustness against point attacks.

e PointMixup[1]: PointMixup is a data augmentation
method for point clouds, leveraging interpolation tech-
niques from the image domain. It addresses the lack
of one-to-one correspondence between points in dif-
ferent objects by employing a shortest path linear in-
terpolation approach. By optimally assigning a path
function, PointMixup generates new examples that fol-
low the shortest path and allows for the application
of interpolation-based regularizers such as mixup and
manifold mixup to improve regularization in the point
cloud domain.

* RSMix[4]: RSMix generates virtual mixed samples
by replacing a portion of one sample with shape-
preserved subsets from another sample, preserving the

structural integrity of the point cloud. The neighbor-
ing function in RSMix is designed to handle the un-
ordered and non-grid nature of point clouds, ensuring
the preservation of their unique properties during aug-
mentation.

3.2.2 Training and Evaluation Procedure

We trained 5 instances of the Point Transformer. For the
first one, we trained using the standard training procedure
mentioned in this implementation' by one of the authors.
For the other four instances, we utilized PointCutMix-K,
PointCutMix-R, PointMixup and RSMix data augmenta-
tions respectively. These augmentations were applied dur-
ing training runtime to reduce storage space. We reused the
data augmentation codes from the ModelNet40-C imple-
mentation’. We chose the hyperparameters, optimizer and
loss based on the original implementation. However, due to
resource constarints, we ran the training for 75 epochs com-
pared to 200 epochs mentioned in the original implementa-
tion. We employed cross-entropy loss, Adam optimizer and
step scheduler during our training.

After training, we tested these 5 models on the
ModelNet40 test split and ModelNet40-C dataset. For
ModelNet40-C, we conducted the evaluation separately for
all models, corruption types and severity levels. Hence, we
ran 75 x 5 = 375 different evaluation runs and aggregated
the results.

4. Experiments
4.1. Clean Data

Initially we measured the effects of training data aug-
mentations on the clean ModelNet40 data. The evaluation
results on the clean data is shown in Table 1. The orig-
inal accuracy reported in the Point Transformer paper on
ModelNet40 test split was 93.7%. We obtained test accu-
racy of 88.89% with original training method, which maybe
attributed to training less no of epochs. We also observe
that all data augmentation strategies outperform the model
with no augmentations(refered to as original in all the ta-
bles) in terms of accuracy and mean class accuracies. This
unequivocally demonstrates the substantial utility of all the
aforementioned data augmentations in Point Cloud Recog-
nition tasks. RSMix performs the best in terms of accuracy,
whereas PointCutMix-K displays the best mean class accu-
racy.

4.2. ModelNet40-C Corrupted Data

As discussed earlier, we conducted a total of 375 exper-
iments. We evaluated our 5 models on the 15 corruption

Uhttps://github.com/qq456cvb/Point-Transformers. git
Zhttps://github.com/jiachens/ModelNet40-C
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Figure 1: The corruptions applied to ModelNet40 dataset to create ModelNet40-C.

Augmentation Accuracy Mean Class Accuracy

Original 0.8889 0.8524
PointCutMix-K  0.8962 0.8634
PointCutMix-R  0.8954 0.8598
PointMixup 0.8995 0.8622
RSMix 0.9039 0.8621

Table 1: Summary of PTvl mean model and class accura-
cies with and without augmentation.

types available in ModelNet40-C, each having 5 severity
levels. After obtaining those results, we aggregate across
the severity levels to get the accuracy and mean class ac-
curacy scores for each corruption type. These detailed re-
sults are presented in 3. In order to gain a more comprehen-
sive and broader understanding, we further aggregate across .
similar corruption types to obtain a score for each corrup-
tion category. We report the tabulated results in Table 2.
We observed the following trends after analyzing the dif-
ferent corruptions.

* As visualized in Figure and tabulated in Table 2, we
observe that all augmentation strategies significantly
outperform the baseline no augmentation strategy by
a significant margin. The disparity in performance
is particularly pronounced in the case of Noise cor-
ruptions, with the superior strategy RSMix exhibit- .
ing a 26% higher accuracy compared to the base-

line approach. For density and transformation corrup-
tions, the performance gap is 14% and 18% respec-
tively. Even the worst performing augmentation strat-
egy shows a notable improvement over to the baseline
strategy. This highlights the significance of employing
proficient augmentation techniques in order to achieve
improved performance on real-world corrupted data.

As observed in Table 3, RSMix demonstrates su-
perior performance across all corruption types, with
the exception of Background corruption. Notably, in
the original ModelNet40-C paper, RSMix exhibited
the highest performance for PCT (Point Cloud Trans-
former), another transformer-based model. There-
fore, we can ascertain that RSMix emerges as the
optimal augmentation strategy for transformer-based
point-cloud models.

One significant discovery highlighted in the
ModelNet40-C  paper was the resilience of
transformer-based architectures, such as PCT,
against transformation corruptions. The results
depicted in Figure 2 and Table 2 distinctly illustrate
that Point Transformer outperforms in transfor-
mation corruptions in comparison to density and
noise corruptions. This reaffirms the assertion that
transformer-based architectures are indeed robust in
the face of transformation corruptions.

Table 3 reveals a noteworthy discrepancy, wherein
the baseline model attains a mere 6% accuracy on
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Figure 2: (a) Accuracy of PTvl with 4 augmentations and
on original ModelNet40-C (b) Mean Class Accuracy of
PTv1 with 4 augmentations and on original ModelNet40-
C

the background corruption, while the top-performing
PointCutMix-R achieves a commendable accuracy of
69%. This stark contrast demonstrates that models
trained solely on clean data exhibit considerable vul-
nerability to background noise, underscoring the crit-
ical necessity of employing data augmentation tech-
niques when addressing background noises in Point
Clouds.

Corruption Category Augmentation Accuracy Mean Class Accuracy

Original 0.5425 0.5169
PointCutMix-K 0.6550 0.6314
density PointCutMix-R 0.6359 0.6173
PointMixup 0.6454 0.6091
RSMix 0.6857 0.6582
Original 0.5354 0.4891
PointCutMix-K 0.7319 0.6647
noise PointCutMix-R 0.7622 0.7030
PointMixup 0.6361 0.5520
RSMix 0.7912 0.7148
Original 0.6775 0.6365
PointCutMix-K 0.7655 0.6984
transformation PointCutMix-R 0.7377 0.6730
PointMixup 0.7265 0.6502
RSMix 0.8506 0.7921

Table 2: Summary of PTvl mean model and mean class
accuracies on the 3 data corruptions types with and without
augmentation during training.

5. Conclusion

In conclusion, considering most existing point cloud
datasets consists of clean denoised data, it becomes im-
perative to supplement model training with augmented
data, especially for safety-critical applications. This ap-
proach enhances the robustness of models against preva-
lent data corruptions, as evidenced by benchmarking ex-
periments conducted on ModelNet40-C. Our study con-
vincingly demonstrates that incorporating data augmenta-
tion strategies significantly improves performance on cor-
rupted datasets. thereby reinforcing the importance of this
technique in practical applications.
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