
CS 726 Project Summary

Sushil Khyalia 160050035
Kartik Khandelwal 160070025
Debanjan Mondal 160050071

Sriram Y 16D070017

February 16, 2024

1 Project Goal

The problem of traffic forecasting deals with predicting Traffic related metrics
like future vehicle speeds, traffic Volume, Taxi pick-up and drop-off rates, traffic
flow etc all of which are of great importance to traffic management and public
safety.

In this project, we are trying to predict the future traffic speed given previ-
ously observed traffic flow from N correlated sensors on the road network.

2 Related literature

The task of traffic prediction is very challenging since it is affected by many
complex factors, such as spatial dependency of complicated road networks and
temporal dynamics, and many more. The factors make traffic prediction a
challenging task due to the uncertainty and complexity of traffic states.

2.1 Non Deep learning Approaches

Non-deep learning based models mainly include knowledge driven methods, time
series models and machine learning models. Two popular time series methods
include ARIMA [arima] and Kalman filter which focus on discovering the pat-
terns of the temporal variation of traffic data for prediction. However, these
only depend on the traffic sequential data and ignore the dynamic spatial de-
pendency. Other popular methods include KNN, Linear Regession, RF etc.

2.2 Deep Learning Models

In recent papers Convolutional Neural Networks(CNN s) are being used to cap-
ture the spatial dependency of road networks. To model the non-linear temporal
dependency Recurrent Neural Networks(RNN’s) are used. Variations of RNN

1

like LSTM, GRU etc have been adopted for traffic prediction because they are
inherently suitable for processing time series data.

Some notable deep learning Models include DCRNN, FC-LSTM, STANN,
STGCN, MRes-RGNN etc. STANN uses an encoder decoder model and at-
tention for capturing both spatial and temporal dependency. STGCN used
GATED CNNs to extract spatial and temporal features and then used a cono-
lutional block to fuse those features. MRes-RGNN used Residual Recurrent
Graph Neural Networks to jointly extract spatial and temporal features from
the data.

3 Tried Approaches

3.1 First Approach

Initially we build upon the code (in tensorflow) of the DCRNN (Diffusion Convo-
lutional Recurrent Neural Network) model available at https://github.com/

liyaguang/DCRNN. In this model, the authors used an Encoder-decoder model
to predict future speed given past speed of vehicles. The authors considered the
sensor network as a graph with nodes as sensors and edges between these nodes
weighted by their proximity. The special contribution of their work is the Diffu-
sion Convolution which they used in place of the normal matrix multiplication
in the GRU cells of the RNN layers. The author’s claimed that the diffusion
convolution is a good way to model traffic flow because of its stochastic nature.

Our Approach was to use the Message Passing Neural Network (MPNN)
Framework[Gil+17] which have been shown to work on well on graphical struc-
tured data. We tried replacing the graphical convolution operation with the
MPNN framework. Unfortunately after implementing this approach, we real-
ized that the model was taking too much time to run.

3.2 Second Approach

Looking at our first approach, we realized that using MPNN along with 4 RNN
layers in the DCRNN model was not feasible so we wrote a new model (in Py-
Torch[ADD CITATION]) just using the MPNN framework for traffic prediction.

In MPNN, we have node features xv and message features evw associated
with each node and message in the graph. Furthermore we define additional
hidden state vector ht

v a message vector mt
v between each pair of nodes which

are updated as per the following two rules :

mt+1
v = Σw∈N(v)Mt(h

t
v, h

t
w, evw)

ht+1
v = Ut(h

t
v,m

t+1
v)

Finally after using these update rules for T time steps, we use the final
hidden hT

v to get the output vector for each node as per the following rules:

2

https://github.com/liyaguang/DCRNN
https://github.com/liyaguang/DCRNN

ŷ = R({hT
v |v ∈ G})

Here M, U and R are called Message function, vertex update function and
Readout function respectively respectively. They can be defined as per the needs
of the user and can range from simple concatenation to complex NN.

For our model we have defined both M and R to be a single layer Fully
Connected NN and U as a Gated Recurrent Cell units(GRU) cell.

4 Experiments

4.1 Code Description

As mentioned before, for our first approach we used Tensor Flow library for cre-
ating our model. We built upon the code from the GitHub repository mentioned
in the paper ’Diffusion Convolutional Recurrent Neural Network’. We then tried
to implement graphical convolution function for the DCGRUCell class using a
message passing neural network consisting of feed forward networks.

For the second approach we defined the model from scratch in PyTorch. The
training script was also rewritten taking inspiration from the one in previous
approach. We also had to redefined the loss functions in PyTorch. The script
describing our model consists of 57 lines, the training script has 123 lines and
the metrics scripts consisting of 90 lines.

4.2 Experimental Platform

We initially performed debugging of the code on our personal computers and
then trained our final version of code using cloud services offered by Google
Colab. We trained our model for approximately 5-6 hours on Python3 runtime
with a GPU back-end.

4.3 Results and Commentary

Due to large value of training time required by our first approach we weren’t
able to produce any kind of results from it. However with our second approach
we were able to generate a model which able to learn some relation between the
input and the output. But the results from our model were not impressive. This
might be due to one or more of the following reasons : Network Architecture
(i.e. the hypothesis space) is not capable of modelling the true relation between
the input space and the output space, unoptimal choice of hyper parameters,
poor initialization of weights leading to convergence to a local optimum.

3

https://github.com/liyaguang/DCRNN

5 Effort

5.1 Time Distribution

First couple of weeks were spent doing the literature review and looking at
the state of the art models for the problem. Also we met with Prathamesh
Deshpande on recommendation of our project Supervisor who guided us towards
different approaches to tackle the problem for which we are grateful.

The next couple of weeks was spent on finalizing our course of action for the
first approach and writing our code.

During the endsem week, we realized that our first approach was practically
unfeasible and started thinking about alternative approach’s.

The period post endsem(3-4 days) was spend implementing and debugging
our second approach.

5.2 Challenges

The most challenges part about the project was coming up with new approach
to solve the problem.

5.3 Work Distribution

The brainstorming and distribution

References

[Gil+17] Justin Gilmer et al. “Neural Message Passing for Quantum Chem-
istry”. In: CoRR abs/1704.01212 (2017). arXiv: 1704.01212. url:
http://arxiv.org/abs/1704.01212.

4

http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212

	Project Goal
	Related literature
	Non Deep learning Approaches
	Deep Learning Models

	Tried Approaches
	First Approach
	Second Approach

	Experiments
	Code Description
	Experimental Platform
	Results and Commentary

	Effort
	Time Distribution
	Challenges
	Work Distribution

