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Abstract
Video frame interpolation is a challenging computer vision
problem that aims to artificially increase the frame rate of
videos. VFI has been explored extensively in the past.
Our goal is to synthesize intermediate frames between two
adjacent frames of a video to produce high quality videos
with smooth view transition. We intend to use VFI model’s
excellent abilities to learn mapping between two consec-
utive frames and the intermediate frame, and reduce the
issues brought on by occlusions and different lighting con-
ditions. VFI faces numerous challenges because the inter-
polated frames are frequently overly smoothed or blurred,
and have artifacts. We evaluate three state of the art mod-
els when presented with challenging scenarios like large
motion, heavy occlusion and presence of high frequency
details in the image. We also propose an alternative met-
ric that does a more holistic evaluation of the interpolated
frames and conduct experiments to confirm whether the
metric performs well.

1 Introduction
Creating intermediary frames between two consecutive
video frames is the goal of video frame interpolation.
Applications including slow-motion creation, video com-
pression, and unique view synthesis are achieved by VFI.
Real-time VFI algorithms operating on high-resolution
videos also have a wide range of potential applications,
including lowering the bandwidth requirements for live
video streaming, offering video editing services to users

with constrained computing resources, and video frame
rate adaptation on the display devices.

The complicated, huge non-linear motions and lighting
changes in real-world videos make VFI difficult. Motion-
based algorithms have undergone the most active develop-
ment in light of the most current developments in optical
flow estimation. By warping two succeeding frames in
either direction, they may predict an intermediate frame
using optical flows. Deep convolutional neural networks
have achieved considerable success in video frame inter-
polation, although there are still certain limitations: The
resulting frames contain artifacts like ghost effect and blur.
These artifacts are brought on by weaker picture fusion and
imprecise motion estimates. Deep neural networks feature
complicated computations and vast model sizes. As a re-
sult, deploying the models to hardware with limited storage
and processing power is challenging.

2 Related Works

The mainstream VFI methods can be classified into optical
flow-based methods and kernel regression methods. Both
types of methods have their advantages and disadvantages.
For example, kernel-based methods are good at handling
motion blur by convolving over local patches. We looked
at one such paper named IFRNet[4]. It combines motion
estimation and frame synthesis into a single convolution
step. It estimates a pair of 2D convolution kernels and
uses them to convolve with previous frame and the next
frame to compute the color of the output pixel. It further
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reduces the computational complexity by producing two
1-D kernels to approximate a 2 D kernels. The model uses
a fully convolutional neural network.

However, kernel based methods are typically compu-
tationally expensive and short of dealing with occlusion.
Also these can’t capture long range motions due to their
limited receptive field. Optical flow based methods utilize
optical flow to build pixel wise correspondences, there-
after, they warp the given neighboring frames to the target
frame. Recently deep learning based approaches are used
to estimate optical flows. Another paper [2] uses encoder-
decoder based architecture in this task. This method ex-
tracts pyramid features from images using encoders and
then gradually refine intermediate flow fields through mul-
tiple decoders by backward warping pyramid features.

Paper [11] further introduces the concept of texture con-
sistency loss instead of a pixel wise losses with the ground
truth images, arguing that given previous and next frames,
the solution of the intermediate frame prediction may not
be unique. It used a cross-scale pyramid alignment across
different scales of features using deformable convolution
networks to maintain temporal consistency. Finally it used
an attention based model to fuse features and generate in-
termediate frames.

One approach to image synthesis that has recently gar-
nered a lot of attention is the concept of diffusion based
models. In a recent paper [1], OpenAI scientists Dharival
and Nichol show that diffusion based models beat state of
the art generative models and produce a much higher qual-
ity output. Diffusion based models work by progressively
adding noise to the data to the point where it is almost
pure noise. A model is then trained to iteratively denoise
the data to finally obtain a clean sample. During the de-
noising process, high frequency details are synthesized in
the image. In the context of video frame interpolation, the
quality of the synthesized image largely determines the
quality of the final interpolated video produced.

Few researchers have attempted to synthesize clear, high
frame rate outcomes from blurry, low frame rate inputs, an
issue common to video enhancement. In order to eliminate
blur and increase frame rate at the same time, this paper
[8] proposed an interpolation technique for blurry video
frames. Modern frame interpolation techniques typically
perform frame warping to synthesize pixels using refer-
ence frames after initially estimating an object’s motion.
However, the motion estimation could not be precise if

the original reference frames are compromised by motion
blur. Frame deblurring followed by frame interpolation is
a direct response, although the interpolation quality is not
as good as it may be. Since the interpolated frames in-
clude blurry input textures, doing frame interpolation and
then frame deblurring also reduces overall quality. The
research paper [8] suggests two modules made up of vari-
ous backbone networks that together make up the unified
Blurry video Interpolation (BIN) approach. The spatial
consistency between the input frames and the regenerated
frames of the modules is enforced by the model using pixel
reconstruction and cycle consistency losses. The module
processes temporal information using ConvLSTM units,
which enables it to synthesize images with consistency and
recover fine details. Thus, their model outperforms state-
of-the-art techniques and completely utilizes space-time
information.

3 Methodology
Since Video Frame Interpolation is a very challenging
task, we started by looking at some state-of-the-art mod-
els. We picked 3 models - IFRNet[2], FilmNet[7] and
ABME[5]. We give a brief overview of the models here

• IFRNet:[2] This is an optical flow based model which
performs an extraction phase so as to retrieve a pyra-
mid of features from each frame. It then gradually
refine intermediate flow fields through multiple de-
coders by backward warping pyramid features. Apart
from an 𝐿1 reconstruction loss, it calculates loss of
the predicted flow in each decoder layer with the flow
output of a off-the-shelf teacher flow network, that
helps to align multi-scale pyramid features explicitly.
It also calculated geometric consistency loss similar
to local binary patterns to retain the local geometric
shape.

• FilmNet:[7] This is another optical flow based model
that uses a scale-agnostic motion estimator in order to
interpolate frames for cases with large motion. Ad-
ditionally, the model uses a ”Gram matrix” loss that
measures the correlation difference between features.
This model uses VGG-19 features in order to better
estimate loss.
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• ABME:[5] In ABME, we predict symmetric bilat-
eral motion fields and refine them by loosening the
linear motion constraint. Specifically, we interpolate
a temporary intermediate frame using the symmetric
fields and then estimate asymmetric bilateral motion
fields from the anchor frame to the two input frames.
In the frame synthesis, the input frames are warped
using the bilateral motion fields and aggregated using
two subnetworks, FilterNet and RefineNet. FilterNet
generates dynamic filters to exploit local informa-
tion while RefineNet reconstructs a residual frame
using global information. ABME handles occluded
regions effectively and provides excellent interpola-
tion results.

3.1 Dataset
We picked up a large-scale dataset called OVIS[6] for oc-
cluded video instance segmentation. This video dataset
was originally designed for video instance segmentation.
The most distinctive property of the OVIS dataset is that
a large portion of objects is under various types of se-
vere occlusions caused by different factors. The average
video duration and the average instance duration of OVIS
are 12.77s and 10.05s respectively which are quite long
compared to VFI benchmark datasets. The scenes are of-
ten very crowded. On average, there are 5.80 instances
per video and 4.72 objects per frame. This makes it an
excellent dataset for finding failure cases for video frame
interpolation.

3.2 Artifact Detection
Since the current benchmark datasets in VFI don’t con-
tain crowded scenes and severe occlusions, we applied the
models mentioned earlier in the OVIS dataset and did a
frame by frame analysis to detect artifacts that are present
in the intermediate frames. We present these artifacts and
comparative analysis of the models in 4.

3.3 Proposed Loss and Evaluation Metric
Finally after idetifying the artifacts in the synthesized im-
ages, we propose an Object Detection based loss and eval-
uation metric that can be used to train and evaluate Video
Frame Interpolation models. Due to the size of the VFI

datasets and lack of computing sources, we couldn’t train
a model with this loss. The details are described in 5.

4 Experiments

4.1 Temporal Pixel Correlation

Figure 1: Temporal correlation of pixel intensity as a
histogram

We conducted an experiment to visualize the temporal
correlation of pixel intensities. We randomly selected 8
videos from the OVIS dataset and then randomly selected
5 frames from each video. We then computed the differ-
ence in the pixel intensities of each of the 5 frames with
that of the next frame, two frames ahead, and 10 frames
ahead. The images were converted to grayscale to obtain
the pixel intensities. Finally, we grouped the pixel inten-
sity difference values by the distance between the frames
before plotting a histogram. It is evident from the his-
togram shown in [1] that as we increase the temporal gap
between two frames in a video, the farther the frames are,
the lower the correlation is between the two frames. The
peak at 0 in the histogram indicates that the pixel values
do not vary as much for a frame distance of 1. However,
in the case of a frame distance of 10, the histogram is a lot
more flatter. This result affirms our intuition that frames
that are temporally closer to one another have similar pixel
distributions.
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4.2 Motion

Fast moving objects present a challenging task for video
frame interpolation. Often times, the complete object
may not be present in both the next or previous frames.
Instead, only a part of the object is visible in one of the
frames with the complete object in the other. In such cases,
a VFI model has to be able to determine how much of
the object should be visible in the interpolated frame and
accordingly synthesize the middle frame. We manually
selected a very challenging video with large motion and
generated interpolated frames using all three models. The
pair of frames [2a 2b] contains large motion of the black
car as it passes in front of the camera The interpolated
frames from each model contain different types of artifacts.
Looking carefully at the image generated by FILMNet, we
can roughly see some structure that could resemble a car.
The headlight and fog light is somewhat visible although
it does not have the same shape. The interpolated frames
from IFRNet and ABME models fail to clearly draw the
car and instead we see a blob that matches the color of the
car.

4.3 Patterns

Pattern artifacts are evident when there is a moving object
behind a particular structure with a pattern. For example,
a person moving behind a fence or a gate. In such cases,
the VFI model has to account for the fact that the structure
of the fence needs to stay constant while the object moving
behind it may not be completely visible. Thus, patterns
present a challenging task for VFI models. We chose
a video from the OVIS dataset containing birds moving
around in a cage. The pair of frames [3a 3b] contains
a bird on the top right moving towards the left side of
the cage. The interpolated frames generated by each of
the three models have distortions. In case of the FILMNet
model we see that the model does not preserve the structure
of the bird cage. Looking closely at the image in 3c we
can see that the cage is disconnected in the portion where
the bird is moving. This, however, is not a problem in the
case of IFRNet and ABME. Both models perform well in
terms of keeping the structure of the cage intact.

4.4 Texture
Textures are repeating high frequency details in an im-
age. For example, bird feathers, bubbles in a fish tank,
etc. Textures present an interesting challenge for VFI as
it is very easy to apply heavy denoising on the image and
achieve a low MSE. This is a well known drawback of the
MSE loss and PSNR evaluation metric. In the interpolated
frames shown in [4c 4d 4e], IFRNet and ABME seem to
be applying a strong smoothing effect thereby erasing the
bubbles from the image. FILMNet is the only model that
generates images where the air bubbles are clearly visible.
However, we noticed a temporal artifact when playing the
video with the interpolated frames. While each image
individually contains air bubbles rendered in good qual-
ity, the motion of the air bubbles is not natural and the
bubbles appear to be moving about in the same spatial lo-
cation. Furthermore, in [5c 5d 5e], the fluffy appearance
of the goose’s feathers in the original frames [5a 5b] is
not present in the interpolated frames generated by IFR-
Net and ABME. The models seems to be applying heavy
smoothing on the synthesized images. FILMNet, on the
other hand, performs better in terms of preserving high
frequency information as the feathers look more natural.

4.5 Occlusions
Occlusions are yet another challenging problem for com-
puter vision because they cause objects to partially or
completely be blocked by another object. We noticed a
variety of artifacts for frames with occlusions. We se-
lected a very challenging video for this task. The input
frames in [5a 5b] have a goose that is lowering its neck.
While doing so, its body stays in the same location but its
neck moves down. As a result, we have an object that is
effectively changing shape while revealing another object
in the background. The artifacts for occluded objects were
different for IFRNet and ABME when compare to those in
FILMNet. As we noted in examples discussed previously,
IFRNet and ABME apply a high degree of smoothing to
the image. Although they seem to be accurately predicting
how much of the neck should be visible in the interpolated
frame, there is a clear loss of high frequency details of
the feathers. The frame generated by FILMNet preserves
high frequency information but deforms the goose’s head.
In another example where two birds were in front of one
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(a) Previous Frame (b) Next Frame

(c) FILMNet (d) IFRNet (e) ABME

Figure 2: Texture artifacts

(a) Previous Frame (b) Next Frame

(c) FILMNet (d) IFRNet (e) ABME

Figure 3: Pattern artifacts
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(a) Previous Frame (b) Next Frame

(c) FILMNet (d) IFRNet (e) ABME

Figure 4: Loss of high frequency information like Bubbles

(a) Previous Frame (b) Next Frame

(c) FILMNet (d) IFRNet (e) ABME

Figure 5: Artifacts in occlusion
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another, the interpolated frame created by FILMNet had
an illusion that made it seem as if the birds were swap-
ping heads. For the same example, the frames generated
by IFRNet and ABME did not show this type of artifact.
However, there was a clear loss of high frequency infor-
mation as the bird feathers were heavily smoothened.

5 Proposed Approach

5.1 Evaluating MSE and PSNR metric

Figure 6: Visually dissimilar images with similar MSE
scores

MSE and PSNR are two of the most popular metrics
used to determine the quality of images produced by com-
puter vision models. However, it is a well known fact that
these metrics do not accurately reflect the perceived qual-
ity of an image [10]. It is evident from the figure [6] that
the images differ vastly in terms of the quality. However,
the authors of the paper declare that all of the images have
the same MSE score [10].This result suggests a need for
an improved evaluation metric for comparing the quality
of images in addition to a loss function that can reflect
image quality more accurately as perceived by the human
eye.

We can clearly PSNR has certain limitations in captur-
ing the quality of generated frames. PSNR is inversely
proportional to the noise in the image. In order to out-
perform other models in this metric, models like IFRNet

produces smoothed image in which the high frequency in-
formation about the image is lost. Also in some cases, as
shown in the last section, important semantic information
is also lost. So even though a model is considered best in
the PSNR metric, it might not be the best when subject to
human evaluation.

Currently we have very accurate object detectors. Since
object detectors capture semantic information of the im-
age, we can evaluate the image quality by the performance
of a pre-trained object detector on that image. In the fol-
lowing sections we proposed a objection detection based
loss which can be used while training and an evaluation
metric which can be used to evaluate the performance of
a VFI model.

5.2 Object detection based loss
The motivation behind designing this loss function is that
the synthesized middle frame should have similar ob-
jects as the previous and next frames. We picked up
pre trained Yolov7[9] object detector pre-trained on the
COCO dataset[3].

We first run the object detector on the previous and next
frames and extract the bounding boxes and corresponding
most probable classes. We used a confidence threshold
of 0.25 to disregard bounding boxes with low confidence.
Then we derive correspondence between the bounding
boxes by nearest neighbor search using the euclidean dis-
tance between the 4D coordinates vectors of the bounding
boxes. To reduce the computational cost, we do the near-
est neighbor search in class by class basis for both images.
Assuming that motion in small timeframe is linear, we can
approximate the bounding boxes in the middle frame by
taking simple average of the bounding box coordinates of
the previous frame and next frame. Now we have a pseudo
ground truth target.

We then run the object detector on the synthesized frame
and extract the bounding boxes and corresponding class
probabilities. Here also we used a confidence threshold of
0.25 such that most probable class in each bounding box
should have at least 0.25 probability, otherwise we discard
that bounding box. Again we find correspondences with
the pseudo ground truth and predicted bounding boxes, this
time all vs all, not considering the class information. We
then calculate the bounding box loss which is the just the
mean squared error between the pseudo ground truth and
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predicted bounding box coordinates. We also calculate
the Class loss which is the Cross entropy loss between the
predicted class probabilities and pseudo ground truth class
label. Our final loss is the weighted sum of the two losses.

𝐿𝑜𝑠𝑠 =
1
𝑁

( 4∑︁
𝑖=1

(𝑃𝑠𝐵𝐵(𝑖) − 𝑃𝑟𝐵𝐵(𝑖))2

+ 𝑘 ∗ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃𝑠𝐶𝑙, 𝑃𝑟𝐶𝑙)

We set 𝑘 = 0.5 for the following results. In 7 we present
the losses on the car images produced by different models.
We can see that even though all the outputs are blurry,
the output produced by FilmNet retains the most semantic
information about the car whereas IFRNet and FilmNet
produce a blurry blob. The proposed loss metric is in line
with the visual quality, the loss is lowest for the FilmNet
output, and is similar for the ABME and IFRNet outputs.

In 8 we present the losses on the goose images produced
by different models. We can see the IFRNet output pre-
serve the most semantic information about the geese, for
example, the beak is quite clear for the central duck in this
output, even though the output is blurry. For the other
outputs the beak is not clear. The proposed loss is in line
with the expectation.

5.3 Object Detection Based Metric
Here we also propose an alternate metric to PSNR for
evaluating Video Frame Interpolation Models. We can
pick up a pre-trained object detector, in this case we picked
up a Yolov7[9] object detector pretrained on the COCO
dataset[3]. While evaluating we have access to the ground
truth intermediate frames. We ran the object detector
on these ground truth images and extract the bounding
boxes and the corresponding most probable class for each
class. We used a confidence threshold of 0.25 to disregard
bounding boxes with low confidence.

Next we run the object detector on the predicted images.
Having the bounding boxes and classes as our target, we
can calculate the Mean Average Precision(mAP) over all
classes. mAP is a widely used metric to evaluate object
detection models. For a well established object detector,
we argue that this metric captures the quality and semantic
information of the synthesized intermediate frames.

We calculated this metric for IFRNet and FIMNet on
Vimeo90K and SNU-FILM Hard datasets. The results

are presented in Table 1. Here mAP@0.5 is the mean
average precision calculated by taking 0.5 as the IOU
threshold. mAP@.5:.95 represents taking IOU threshold =
0.5, 0.55, 0.60, ...0.95 with steps of 0.05, calculating mAP
each threshold and finally averaging them. We can see that
although IFRNet performs better in terms of PSNR met-
ric, FilmNet performs better in terms of mAP. This metric
gives us idea about the synthesized object quality. Certain
models like IFRNet which heavily smoothes the image to
get higher PSNR, might not perform well in this metric.

6 Future Work

6.1 End to End Training

An existing model can be trained with the proposed Ob-
ject Detection Based loss and we can compare the trained
model with the existing state-of-the-art models with PSNR
metric as well as the proposed Object Detection based met-
ric.

6.2 VFI Based Video Compression

A popular use case for video frame interpolation is data
compression. With a reliable VFI model, one could theo-
retically cut down storage consumption by 50% by drop-
ping every alternate frame and generating the missing
frames on demand. However, this becomes challenging
as dropping frames makes it more difficult to estimate op-
tical flow and consequently results in poorer video frame
interpolation results. Instead of dropping alternate frames
entirely, we could drop a certain % of the pixels from each
frame under the constraint of minimizing error in opti-
cal flow measurement. We hypothesize that this strategy
would improve the quality of video frame interpolation as
the model will have more data about the frame it needs to
interpolate. The pixels that are not dropped can be used
by the model as a heuristic for optical flow measurement
and also improve the quality of synthesized high frequency
details in an image. Furthermore, we could apply this type
of pixel dropping for each of RGB channels separately. Fi-
nally, we could use a temporal demosaicing strategy that
uses multiple frames to synthesize the missing pixels for
each channel.
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(a) Previous Frame (b) Next Frame

(c) FILMNet Output: Loss = 0.0171 (d) IFRNet Output: Loss = 0.0250 (e) ABME Output: Loss = 0.0255

Figure 7: Object Detection Losses for Car

(a) Previous Frame (b) Next Frame

(c) FILMNet Output: Loss = 0.0967 (d) IFRNet Output: Loss = 0.0919 (e) ABME Output: Loss = 0.0951

Figure 8: Object Detection Losses for Goose
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Model Dataset PSNR mAP@0.5(Yolov7) mAP@.5:.95(Yolov7)

IFRNet Vimeo90K 35.80 0.858 0.755
IFRNet SNU-FILM Hard 30.41 0.705 0.618
FilmNet Vimeo90K 35.76 0.868 0.767
FilmNet SNU-FILM Hard 30.20 0.723 0.629

Table 1: Comparison between PSNR and mAP for different models and datasets

6.3 Bounding Box Texture Quality Analysis

In our bounding box based metric, we do not measure the
quality of the synthesized object’s texture. As a result,
any loss of high frequency information such as textures,
edges and other fine details is ignored. For example, say,
an interpolated image of a car causes it to lose its vinyls, or
changes the color of the car. Our bounding box regression
loss approach would not accurately reflect this as loss of
quality as long as One of the next steps for our project
could be to use a texture comparison metric within the
bounding boxes. Factoring in texture information into the
final evaluation score would allow us to better evaluate the
ability of the model to preserve high frequency information
such as bird feathers, bubbles in a fish tank, edges or other
stylistic features of cars, etc.

6.4 Optical Flow Aided Object Detection
and Recognition

One of the challenges we faced while building the object
detection based evaluation metric was that some images
had too many objects occluding one another. As a result,
the object detector we used was not able to accurately de-
tect all objects. To improve on this, we could use an alter-
native object detector that can factor in additional details
from nearby frames. Since we are working on a problem
in the domain of videos, we can assume we have access
to multiple frames unlike YOLOv7 which only considers
object visible in a single frame. An evaluation metric
that uses optical flow could improve object detection and,
consequently, give measure the quality of the interpolated
frame .
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